GOWRI SANKAR. C

1C, Hospital Road, Kavindapadi, Bhavani (Taluk), Erode- 638455.

Mail ID: sankar.ceg10@gmail.com
Contact No: +919976062710

Academic Qualification:

Institution Name	Course	Department	Year of Passing	Score
GBHS, kavindapadi	SSLC	-	2008	89.80%
GBHS, kavindapadi	HSC	Computer Science	2010	90.41%
College of Engineering Guindy, Anna University	B.E	Mechanical Engineering	2014	7.82 CGPA
Erode Sengunthar Engineering College	M.E	Manufacturing Engineering	2019	8.28 CGPA

Projects:

- a) Title: Phase Change Material encapsulated heat storage bowl. (UG Academic)
- **b)** Title: Experimental investigation on "Vermiculite Weathering Coarse Tiles" for passive cooling of buildings. (UG Academic)
- c) Title: ZnO Nanowire on modified Carbon fibre for Interfacial studies and Energy harvesting. (JRF Research project)
- **d**) A study on mechanical properties of Glass fiber reinforced polyester composite with addition of Al₂O₃ particles (PG Academic)

Software Skills:

- Ms-office,
- Pro-E 5.0/Creo elements,
- AutoCad,
- ANSYS,
- CATIA.

Professional Skills:

- 1. Knowledge of laboratory standards and best practices.
- 2. Knowledge on mechanical instruments, testing standards and characterization.
- 3. Hands on experience of fiber polymer composite manufacturing.
- 4. Possess communication, analytical, problem solving and R&D skills.

Experience:

Junior Research Fellowship in DST-SERB Project, Veltech University. (ZnO Nanowire on modified Carbon fibre for Interfacial studies and Energy harvesting) – (Oct. 2014- Aug. 2017).

Work history and Responsibilities:

- 1. Managed material procurement of consumable and non-consumable resources.
- 2. Getting approvals of PO and clearing of Purchase in-Voice from Accounts and Management.
- 3. Maintained Inventory stock book and List of bills as soft database.
- 4. Conducted Single fiber tensile testing of reinforcement fibers such as carbon, glass and natural silk and coir fibers.
- 5. Preparation of Experiment design (DOE) and Optimization Technique for coating of ZnO nanowires on fibers and conducting of experiments.
- 6. Studied Interfacial strength of ZnO nanowires modified fibers/epoxy composites using fragmentation test with help of Polarizing Optical Microscope.
- 7. Studied potential of ZnO Nanowires based piezoelectric nanogenerator for harvesting of mechanical energy as electrical energy.
- 8. Used design tool CATIA, for design of plastic molds by 3D printing.
- 9. Implemented quality control procedures for research methodology
- 10. Prepared the project progress report.
- 11. Instructed students on their academic and research projects.

Publications:

Conferences

- 1. International Conference on Additive Manufacturing (ICAM 2016):A Review on Energy Harvesting Using 3D Printed Fabrics for Wearable Electronics.
- 2. Gowthaman, S., Sankar, C.G. and Chandrakumar, P., 2017. Evaluation of Tensile Properties of Natural Silk and Coir Fibers. In Innovative Design and Development Practices in Aerospace and Automotive Engineering (pp. 393-399). Springer Singapore.

Journals

- 1. Gowthaman S., Chidambaram G.S., Rao D.B.G., Subramya H.V. and Chandrasekhar U., 2016. A Review on Energy Harvesting Using 3D Printed Fabrics for Wearable Electronics. Journal of The Institution of Engineers (India): Series C, pp.1-13.
- 2. Swaminathan, G., Palanisamy, C., Chidambaram, G., Henri, G. and Udayagiri, C., 2018. Enhancing the interfacial strength of glass/epoxy composites using ZnO nanowires. Composite Interfaces, 25(2), pp.151-168.
- 3. Enhanced mechanical properties of Glass fiber reinforced polymer composite with addition of Al2O3, Submitted to "Australian Journal of Mechanical Engineers". Under production stage.

Declaration:

I am also confident of my ability to work in a team. I hereby declare that the information furnished above is true to the best of my knowledge.

Yours faithfully,

(C.GOWRI SANKAR)